Relative Polynomial Closure and Monadically Krull Monoids of Integer-valued Polynomials

نویسنده

  • SOPHIE FRISCH
چکیده

Let D be a Krull domain and Int(D) the ring of integer-valued polynomials on D. For any f ∈ Int(D), we explicitly construct a divisor homomorphism from [[f ]], the divisor-closed submonoid of Int(D) generated by f , to a finite sum of copies of (N0,+). This implies that [[f ]] is a Krull monoid. For V a discrete valuation domain, we give explicit divisor theories of various submonoids of Int(V ). In the process, we modify the concept of polynomial closure in such a way that every subset of D has a finite polynomially dense subset. The results generalize to Int(S, V ), the ring of integer-valued polynomials on a subset, provided S doesn’t have isolated points in v-adic topology.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integer-valued Polynomials on Algebras

Let D be a domain with quotient field K and A a D-algebra. A polynomial with coefficients in K that maps every element of A to an element of A is called integer-valued on A. For commutative A we also consider integer-valued polynomials in several variables. For an arbitrary domain D and I an arbitrary ideal of D we show I -adic continuity of integer-valued polynomials on A. For Noetherian one-d...

متن کامل

Generalizations of Dedekind domains and integer-valued polynomials

This talk will provide a snapshot of contemporary commutative algebra. In classical commutative algebra and algebraic number theory, the Dedekind domains are the most important class of rings. Modern commutative algebra studies numerous generalizations of the Dedekind domains in attempts to generalize results of algebraic number theory. This talk will introduce a few important generalizations o...

متن کامل

Substitution and Closure of Sets under Integer-Valued Polynomials

Let R be a domain and K its quotient-field. For a subset S of K , let FR(S) be the set of polynomials f ∈ K[x] with f(S) ⊆ R and define the R -closure of S as the set of those t ∈ K for which f(t) ∈ R for all f ∈ FR(S). The concept of R -closure was introduced by McQuillan (J. Number Theory 39 (1991), 245–250), who gave a description in terms of closure in P -adic topology, when R is a Dedekind...

متن کامل

Integer-valued polynomial in valued fields with an application to discrete dynamical systems

Integer-valued polynomials on subsets of discrete valuation domains are well studied. We undertake here a systematical study of integer-valued polynomials on subsets S of valued fields and of several connected notions: the polynomial closure of S, the Bhargava’s factorial ideals of S and the v-orderings of S. A sequence of numbers is naturally associated to the subset S and a good description c...

متن کامل

Essential Domains and Two Conjectures in Dimension Theory

This note investigates two long-standing conjectures on the Krull dimension of integer-valued polynomial rings and of polynomial rings, respectively, in the context of (locally) essential domains.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015